538 research outputs found

    Quantum propagator for some classes of three-dimensional three-body systems

    Full text link
    In this work we solve exactly a class of three-body propagators for the most general quadratic interactions in the coordinates, for arbitrary masses and couplings. This is done both for the constant as the time-dependent couplings and masses, by using the Feynman path integral formalism. Finally the energy spectrum and the eigenfunctions are recovered from the propagators.Comment: 16 pages, no figure

    Orbit based procedure for doublets of scalar fields and the emergence of triple kinks and other defects

    Full text link
    In this work we offer an approach to enlarge the number of exactly solvable models with two real scalar fields in (1+1)D. We build some new two-field models, and obtain their exact orbits and exact or numerical field configurations. It is noteworthy that a model presenting triple-kinks and double-flat-top lumps is among those new models

    Coupled scalar fields Oscillons and Breathers in some Lorentz Violating Scenarios

    Get PDF
    In this work we discuss the impact of the breaking of the Lorentz symmetry on the usual oscillons, the so-called flat-top oscillons, and the breathers. Our analysis is performed by using a Lorentz violation scenario rigorously derived in the literature. We show that the Lorentz violation is responsible for the origin of a kind of deformation of the configuration, where the field configuration becomes oscillatory in a localized region near its maximum value. Furthermore, we show that the Lorentz breaking symmetry produces a displacement of the oscillon along the spatial direction, the same feature is present in the case of breathers. We also show that the effect of a Lorentz violation in the flat-top oscillon solution is responsible by the shrinking of the flat-top. Furthermore, we find analytically the outgoing radiation, this result indicates that the amplitude of the outgoing radiation is controlled by the Lorentz breaking parameter, in such away that this oscillon becomes more unstable than its symmetric counterpart, however, it still has a long living nature

    On the study of oscillons in scalar field theories: A new approach

    Get PDF
    In this work we study configurations in one-dimensional scalar field theory, which are time-dependent, localized in space and extremely long-lived called oscillons. It is investigated how the action of changing the minimum value of the field configuration representing the oscillon affects its behavior. We find that one of the consequences of this procedure, is the appearance of a pair of oscillon-like structures presenting different amplitudes and frequencies of oscillation. We also compare our analytical results to numerical ones, showing excellent agreement

    Dirac equation exact solutions for generalized asymmetrical Hartmann potentials

    Full text link
    In this work we solve the Dirac equation by constructing the exact bound state solutions for a mixing of vector and scalar generalized Hartmann potentials. This is done provided the vector potential is equal to or minus the scalar potential. The cases of some quasi-exactly solvable and Morse-like potentials are briefly commented.Comment: 8 pages, no figure

    Fluctuating solutions for the evolution of domain walls

    Full text link
    A class of oscillating Lorentz covariant configurations for the evolution of the domain walls in diverse dimensions are analytically obtained. It is shown that the oscillating solutions in the case of domain walls are responsible for structures which are larger than the usual kink-like configurations and, in the Lorentz covariant evolution case, lead to long-standing configurations.Comment: 14 pages, 7 figure
    corecore